STRUCTURAL ASSIGNMENT OF N³-ACYLATED URIDINE DERIVATIVES BY MEANS OF 13 C NMR SPECTROSCOPY

Takashi Kamimura, Tsukio Masegi, Mitsuo Sekine, and Tsujiaki Hat&* Department of Life Chemistry, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 227

Diisopropylethylamine was effective as a base for acylation of 2',3',5'-tri-O-acetyluridine with various acid chlorides. The 13 C NMR spectra of the products and related compounds showed clearly that the acyl groups intoduced to the uracil moiety are attached to the N³-nitrogen.

Recent studies on the phosphotriester approach to oligoribonucleotide synthesis revealed that the 0^4 -modification of the uracil residue actually occured at the condensation stage. $^{\mathrm{1}}$ In order to overcome this problem, a new protection mode for the imide group has been required. Originally, Reese reported 2,4-dimethylphenyl as the 0^4 masking group. 2 In this masking mode, however, C^4 -ammonolysis occurs upon treatment with ammonia, which is used for deprotection of N-acyl groups. Accordingly, specific conditions have been used only for removal of this type of protective group prior to unblocking of the N-acyl groups. $^2\,$

On the other hand, we have independently reported 2,2,2-trichloro-l,ldimethylethoxycarbonyl and anisoyl as the imide blockers of uridine for the synthesis of $2'$ -O-methyluridine³ and uridylyl(3'-5')uridine 3'-phosphate,⁴ respectively. Especially, the latter has proved to be very useful for the synthesis of a relatively long oligoribonucleotide, GUAUCAAUAAUG.⁵ Recently, Chattopadhyaya has similarly proposed aroyl groups as the possible N^3 -blockers.⁶ However, it is not yet clear whether these acyl groups are attached to the N^3 -nitrogen or the 0^4 -oxygen. Only a little has been known about the structure of base-acylated uridine derivatives. Reese 1a , b and Sung $1c-e$ reported that sulfonation and phosphorylation of $2',3',5'-0$ -protected uridine derivatives resulted in 0^4 -modified products in high yields. In the case of guanosine having a similar imide function, modifications involving acylations are known to occur on the 0^6 -oxygen.⁷⁻⁹ In contrast to these facts, Pfleiderer suggested on the basis of infrared spectrum analysis that tetrabenzoyluridine, prepared by the full benzoylation of uridine with benzoyl chloride, has a N^3 -benzoyl structure.¹⁰

In this paper, we wish to report a more clear-cut conclusion, on the basis

of 13 C NMR, that all the acyl groups studied here are bonded to the N^3 -nitrogen.

Introduction of several kinds of acyl groups into the uracil moiety of 2',3',5'-tri-0-acetyluridine (I__) was carried out in pyridine in the presence of Hunig base. $4,11$ which served as a powerful catalyst.

These conditions and results are summarized in Table I. In all cases, chromatographically stable acylated products (La-g) were obtained.

Table I. Acylation of $\frac{1}{2}$ with various acid chlorides.^a

aAll the products were isolated by silica gel column chromatography and gave satisfactory elemental analyses.

In order to determine the stucture of $2a-g$, $2', 3', 5'-tri-0-accept1-3-N$ benzyluridine (3) was prepared as reference material according to the literature method.¹⁰ Reese reported that azole functions were introduced to the C^4 carbon of the uracil residue by treatment with the corresponding arenesulfonyl azolides. Sung has recently applied this reaction to conversion of uridine into cytidine at the oligomer level.^{1d,e} Therefore, we prepared 2',3',5'-tri-0-acetyl-4-0-benzyluridine (\mathfrak{g}) in 30% overall yield via $2',3',5'-tri-O-accept1$ uridine (5) from $2'$, $3'$, $5'$ -tri-O-acetyl-4-O-(2,4,6-triisopropylbenzenesulfonyl)uridine (4) .

Initial attempts to convert 4 into 6 under various conditions were unsuccessful. A similar difficulty has also been reported in the case of

Table II. ¹³C NMR spectra of acylated uridine derivatives 2a-g and related compounds.

4244

guanosine by Jones¹² who synthesized 0^6 -alkyl guanosine derivatives from 0^6 -sulfonated derivatives via C^6 -trimethylammonium sulfonate intermediates. Therefore, compound $\cancel{4}$ was converted to $\cancel{5}$ by treatment with tetrazole (3 equiv) in pyridine-dioxane $(l:l, v/v)$ for 30 min.

Triethylamine was effective for the conversion of $5, to 6$. From a mechanistic point of view, it is plausible that the benzyl group of 6 is attached to the oxygen at the 4-position. In fact, the compound 6 was clearly distinguished from its regioisomer 3 in their 13 C NMR spectra as shown in Table II. chemical shifts of c^4 of compounds 3-6 varied significantly owing to the inherent electronic effect of the substituents bound to the c^4 -carbon, while the chemical shifts of c^5 in the intermediates $\underline{4}$ and $\underline{5}$ were very similar to that of 6. Contrary to these facts, the C⁵ signal of $\frac{3}{3}$ is shifted considerably to a low field compared with those of $4-6$ and very near that of uridine. The chemical shifts of c^2 and c^6 of all the compounds 1-6 did not change so much except in the case of 4. The ¹³C NMR spectra of the acylated products 2a-g are very similar to each other, suggesting that they have an uniform structure. **By** comparison with the chemical shifts of c^5 , we concluded that the acylation (alkoxycarbonylation and benzoylation) of 1 gave exclusively the N^3 -substituted products.

The 13 C NMR spectroscopy will be a powerful tool for determining the structure of other base-substituted uridine derivatives.

References

- 1) a) C. B. Reese and A. Ubasawa, Tetrahedron Lett., 21, 2265 (1980); b) Idem., Nucleic Acids Res. Special Pub. 7, 5 (1980); c) W. L. Sung, Chem. Commun., 1089 (1981); d) W. L. Sung, Nucleic Acids Res., 9, 6139 (1981); e) W. L. Sung and S. A. Narang, Can. J. Chem., 60, 111 (1982).
- 2) S. S. Jones, C. B. Reese, S. Sibanda, and A. Ubasawa, Tetrahedron Lett., 22, 4755 (1981).
-
- 3) T. Kamimura, T. Masegi, and T. Hata, Chem. Lett., 965 (1982).
4) T. Kamimura, T. Masegi, K. Urakami, S. Honda, M. Sekine, and T. Hata, Chem.
Lett., 1051 (1983).
- 5) T. Kamimura, M. Tsuchiya, K. Urakami, K. Koura, M. Sekine, K. Shinozaki, K. Miura, and T. Hata, J. Am. Chem. Soc. in press.
6) C. J. Welch and J. Chattopadhyaya, Acta Chem. Scad., B37, 147 (1983).
7) P. K. Bridson, W. T. Markiewicz, and C. B. Reese, Chem. Commun, 447 and 791
-
- (1977) .
- 8) P. H. Daskalov, M. Sekine, and T. Hata, Tetrahedron Lett., 21, 3899 (1980); Idem., Bull. Chem. Soc. Jpn. 54, 3076 (1981).
- 9) T. Kamimura, M. Tsuchiya, K. Koura, M. Sekine, and T. Hata, Tetrahedron Lett., 24, 2775 (1983).
- 10) H. U. Blank and W. Pfeiderer, Tetrahedron Lett., 869 (1967).
- 11) S. Osaki, Y. Watanabe, H. Fujisawa, and T. Hoshiko, Heterocycles, 22, 527 (1984) .
- 12) a) B. L. Gaffney and R. A. Jones, Tetrahedron Lett., 23, 2253 and 2257 (1982); b) B. L. Gaffney, L. A. Marky, and R. A. Jones, Tetrahedron, 40, 3 (1984) .

(Received in Japan 4 June 1984)